66 research outputs found

    Study of CO2 emissions from energy consumption in Spanish hospitals

    Get PDF
    Hospitals generate a high amount of carbon dioxide emissions into the atmosphere compared with residential and commercial buildings. Therefore, it is necessary to quantify and identify the CO2 emissions derived from energy consumption in hospitals, studying their relationship with functional variables. The aim of this article is to analyze the CO2 emissions derived from the hospital energy consumption. In Spain, 14 hospitals were analyzed, studying the built surface area and the number of beds in the period 2010-2014. The results showed that in a hospital, the average annual CO2 emissions divided by built surface area is around 0.10 Ton per m2, and the annual CO2 emissions divided by number of beds is around 13 Ton per bed. These ratios will make it possible to benchmark hospital management and set targets for limiting emissions into the atmosphere

    Determination of the elimination costs of vibrations and dust transmission in refurbishment healthcare buildings works in Spain

    Get PDF
    The aim of this paper is to evaluate the average cost of preventive measures for noise insulation, vibrations and dust transmission in healthcare buildings, which guarantee environmental biosafety in renovation infrastructure works. 30 hospital reformation works carried out between 2004 and 2010 in Spain were analyzed. The average impact of the environmental biosafety measures incorporated in the project was 1.07 % of the budget. The average cost of the actions was 5.5 €/m2 in works in critical areas and 0.9 €/m2 in the rest. In critical areas, the sectoring meant an average cost of 26.89 % of the budget of the work and in the rest of areas of 29.48 %. It was concluded that the management of environmental biosafety in the works means a minimum cost, which reduces the transmission of noise, vibrations and dust, reducing the probability of nosocomial infection

    Comparativa entre sistemas constructivos de cubiertas de edificios, según el ACV

    Get PDF
    En base a las técnicas basadas en el Análisis de Ciclo de Vida, esta investigación compara el impacto medioambiental de 11 variantes constructivas de cubiertas en edificios residenciales. Se determina la energía consumida, la huella de carbono, los residuos de colocación y embalaje y otros varios, hasta valorar 9 indicadores de sostenibilidad, incluyendo aspectos socioeconómicos como el coste decenal de mantenimiento, la ratio de mantenibilidad o la cantidad de mano de obra necesaria. Cada una de las cubiertas se ha caracterizado en base a 20 tipologías de capas constituyentes, que se han agrupado bajo 6 grupos funcionales constructivos, según la función que tuvieran dentro de las cubiertas. En base a este estudio, se ha demostrado que las cubiertas más sostenibles son las cubiertas planas no transitables acabadas en grava (tanto con lámina de PVC como bituminosa), seguidas de las cubiertas inclinadas (de teja de mortero de cemento y cerámica) y de las cubiertas ajardinadas con lámina de PVC. Se observó que la cubierta transitable plana genera mayor emisión de dióxido de carbono y utiliza más energía en su construcción y que las cubiertas planas acabadas con grava requieren un menor coste de mantenimiento decenal. Además, las cubiertas inclinadas generan mayor cantidad de residuos de construcción y de embalaje que las planas y requieren mayor cantidad de mano de obra, especialmente las cubiertas inclinadas de tejas.Based on Life Cycle Assessment techniques, this research compares the environmental impact of 11 variants for the construction of roofs in residential buildings. Among others, the energy used, the carbon footprint and the waste associated to placement and packaging are found, leading to 9 sustainability indicators, which include socio-economic aspects such as the decennial maintenance cost, the maintainability ratio or the quantity of labour necessary. Each of the roofs was characterised based on 20 typologies of constituent layers, categorised under 6 construction functional groups, according to the function held in the roofs. Based on this study, it is demonstrated that the most sustainable roofs are non-trafficable flat roof with gravel finishing (with either a PVC or bituminous layer), followed by pitched roofs (with ceramic and cement mortar tiles) and green roofs with PVC layer. It was noted that trafficable flat roofs generate greater emissions of carbon dioxide and use more energy in their construction, and that flat roofs with gravel finishing require a lower cost of decennial maintenance. Furthermore, pitched roofs generate a higher amount of construction and packaging waste than flat roofs and require more labour, especially in the case of pitched roofs with tiles.peerReviewe

    Analysis of the economic impact of environmental biosafety works projects in healthcare centres in extremadura (spain)

    Get PDF
    The aim of this paper is to analyze the results obtained in the methodological application of techniques aimed at the maintenance of environmental biosafety in works of reform and expansion of healthcare centres in Extremadura, Spain during 2004-2010, assessing the costs of its implementation and contrasting if the use of a BSA project in phase of works affects the probability of nosocomial infection and the conditions of health and safety. The average investment accounted for a cost of 5.5 €/m2 under construction in critical areas and 0.9 €/m2 in the rest works. The impact of biosafety on the work budget draft was a 1.07% at hospitals and a 0.57% at healthcare centers. In critical areas, the sectorization was an average investment of the 26.89%, while in other areas it was the 29.48%. The largest investment in classification corresponds to small venues in critical areas involving the 40.64%

    Analytical determination of medical gases consumption and their impact on hospital sustainability

    Get PDF
    Se sabe que los gases medicinales muestran un gran impacto ambiental y también consumen recursos relevantes en términos de gestión hospitalaria. El presente trabajo informa sobre un estudio realizado entre 2008 y 2016 en un conjunto objetivo de 12 hospitales españoles con área de piso y número de camas de 2314–23,300 m2 y 20–194, respectivamente, para las cuales las tasas de consumo anual promedio de oxígeno, nitrógeno, se analizaron aire medicinal, dióxido de carbono y protóxido de nitrógeno. Se demostró que el consumo anual de gases medicinales en un hospital estaba correlacionado con el número de egresos hospitalarios, el número de cirugías, el número de intervenciones de emergencia, el número de hospitalizaciones, el número de camas de hospital, el área útil del piso del edificio. y la cantidad de trabajadores. En particular, el consumo anual por cama de hospital se calculó como 350 m3 para oxígeno, 325 m3 para aire medicinal, 9 m3 para protóxido de nitrógeno y 3 m3 para dióxido de carbono. Se muestra que la actividad de atención médica aparece como una variable adecuada para cuantificar y monitorear el consumo de gases médicos en los hospitales, evaluar el tamaño de sus instalaciones y optimizar la gestión del mantenimiento.Medical gases are known to show a great environmental impact and also to consume relevant resources in terms of hospital management. The present work reports on a study performed between 2008 and 2016 in a target set of 12 Spanish hospitals with floor area and number of beds ranging 2314–23,300 m2 and 20–194, respectively, for which the average annual consumption rates of oxygen, nitrogen, medicinal air, carbon dioxide and nitrogen protoxide were analysed. The annual consumption of medical gases in a hospital was proved to be correlated with the number of hospital discharges, the number of surgeries, the number of emergency interventions, the number of hospitalisations, the number of hospital beds, the useful floor area of the building and the number of workers. In particular, the annual consumption per hospital bed was computed as 350 m3 for oxygen, 325 m3 for medicinal air, 9 m3 for nitrogen protoxide and 3 m3 for carbon dioxide. It is shown that healthcare activity appears as an adequate variable to quantify and to monitor medical gases consumption in hospitals, to assess the size of their facilities as well as to optimise maintenance management.peerReviewe

    Economic and environmental impact of energy saving in healthcare buildings

    Get PDF
    El propósito de este artículo es estimar los impactos económicos y ambientales del consumo de energía derivado de los edificios de atención médica y propone varias opciones de ahorro de energía en el sector. Se realizó un estudio experimental sobre el consumo de energía entre 2005 y 201 3 en 12 hospitales y 70 centros de salud en España, construido entre 1980 y 2005 a través de auditorías realizadas entre 2005 y 2012, realizadas por la Agencia de Energía de Extremadura. El estudio se centró en la energía eléctrica, HVAC, DWH, sistemas de iluminación, energías renovables, estrategia de mantenimiento, aislamiento térmico y tamaño óptimo del edificio. Específicamente, se evaluaron los siguientes parámetros: ahorro de energía, emisión de inversión de gases de CO2, NO2 y SO2, y recuperación de la inversión. Los resultados revelaron que a través de una gestión energética adecuada de los edificios sanitarios es posible ahorrar hasta 8,60 kWh / m2 por año, para edificios de menos de 5000 m2 (sin camas), lo que representa un gasto de 1,55 / m2. En edificios sanitarios de más de 5000 m2 (con camas), fue posible ahorrar hasta 6,88 kWh / m2 por año, lo que representa un gasto de 1,25 / m2.The purpose of this article is to estimate the economic and environmental impacts of energy consumption derived from healthcare buildings and proposes several energy-saving options in the sector. An experimental energy consumption study was development between 2005 and 201 3 in 12 hospitals and 70 healthcare centres in Spain, built between 1980 and 2005 through audits carried out between 2005 and 2012, performed by the Extremadura Energy Agency. The study focused on electric energy, HVAC, DWH, lighting systems, renewable energies, maintenance strategy, termal insulation, and optimal building size. Specifically, the following parameters were evaluated: energy savings, investment emission of CO2, NO2, and SO2 gases, and payback. The results revealed that through an appropriate energy management of healthcare buildings it is possible to save up to 8.60 kWh/m2 per year, for buildings of less than 5000 m2 (with no beds), which represents an expense of 1.55 /m2. In healthcare buildings larger than 5000 m2 (with beds), it was possible to save up to 6.88 kWh/m2 per year, which represents an expense of 1.25 /m2.• Junta de Extremadura. Proyecto GR-15057peerReviewe

    Determination of the energy behaviour in municipalities with fewer than 6000 inhabitants in Badajoz (Spain)

    Get PDF
    La mayoría de los municipios de Europa tienen una población de menos de 6000 habitantes y un alto consumo de energía. Para reducir el consumo, es necesario conocer de antemano el comportamiento energético de un municipio. El objetivo de este artículo es analizar la situación energética y medioambiental de los municipios de la provincia de Badajoz (España) y formular indicadores de eficiencia energética y medioambiental. El método se basa en el análisis de 74 auditorías energéticas realizadas entre 2012 y 2014 en los municipios correspondientes, y se estudia el consumo medio de energía final en función de cuatro variables diferentes: superficie del municipio, número de habitantes, coste de la energía y emisiones anuales de CO2. Además, se realizó un análisis estadístico basado en se llevó a cabo una variación. Los resultados obtenidos muestran que el consumo energético anual medio de un municipio de menos de 6000 habitantes es de 300 kWh por habitante y 1 kWh por m2 de superficie. Se observó una gran variabilidad en el costo medio de la energía para cada municipio, entre 0,11 y 0,25 /kWh, con una media de 0,17 /kWh. Además, por métodos estadísticos se determinó que el consumo de energía de un municipio es proporcional a la superficie que ocupa y a su número de habitantes, proponiendo una ecuación que permite determinar el consumo final de energía según ambas variables. Este benchmarking es válido para implementar técnicas de ahorro energético y para priorizar las inversiones en la renovación de las instalaciones. No existen precedentes de estudios de investigación similares con un número tan elevado de municipios.Most of the municipalities in Europe have a population of less than 6000 inhabitants and high energy consumption. In order to reduce consumption, it is necessary to know the energy behaviour of a municipality beforehand. The purpose of this article is to analyse the energy and environmental situation of the municipalities of the province of Badajoz (Spain) and formulates energy efficiency and environmental indicators. The method is based in the analysis of 74 energy audits were carried out between 2012 and 2014 in the corresponding municipalities, and the average final energy consumption was studied in terms of four different variables: area of the municipality, number of inhabitants, cost of energy, and annual CO2 emissions. In addition, a statistical analysis based on variance was carried out. The results obtained show that the average annual energy consumption of a municipality of less than 6000 inhabitants is 300 kWh per inhabitant and 1 kWh per m2 of surface area. A great variability was observed in the average cost of energy for each municipality, between 0.11 and 0.25 /kWh, with an average of 0.17 /kWh. In addition, by statistical methods it was determined that the energy consumption of a municipality is proportional to the surface área that it occupies and its number of inhabitants, proposing an equation that allows determining the final energy consumption according to both variables. This benchmarking is valid to implement energy saving techniques and to prioritize investments in the renovation of the facilities. There are no precedents of similar research studies with such a large number of municipalities.• Programa de Cooperación Transfronteriza España y Portugal (POCTEP) y Fondos FEDER. Proyecto europeo RED URBANSOLpeerReviewe

    Developing Project Managers’ Transversal Competences Using Building Information Modeling

    Get PDF
    The emergence of building information modeling (BIM) methodology requires the training of professionals with both specific and transversal skills. In this paper, a project-based learning experience carried out in the context of a project management course at the University of Extremadura is analyzed. To that end, a questionnaire was designed and given to students who participated in the initiative. Results suggest that BIM can be considered a virtual learning environment, from which students value the competences developed. The emotional performance observed was quite flat. Similarly, students valued the usefulness of the initiative. Students expressed a desire for the methodological change of the university classes, and thought that BIM methodology could be useful for other courses. The results obtained show a line of work to be done to improve the training of students and university teaching

    Thermal applications of biomass in hospitals

    Get PDF
    The aim of this study was to evaluate the feasibility of using renewable energy from biomass for the production of heat and cold in hospitals, examining the feasibility of establishing such facilities in Extremadura (Spain). In its development, has been taken into account the technical aspects related to the operation of this type of heating, including reliability and maintainability of them, assessing the problems generated by the introduction of renewable energy from biomass in publics buildings. It has been shown that high consumption of hot water and heating systems consume annually make the hospital a great place for the installation of thermal production systems based on biomass, because the necessary demand and its continued operation, promotes amortization. In addition, it was found that promoting the use of renewable energy through biomass, can help create and consolidate a native biomass market, emerging at the beginning of this project and in the consolidation phase at the present time, that eventually will get an economic improvement in rural areas, promoting its development
    corecore